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Abstract

Salient object detection provides an alternative solu-
tion to various image semantic understanding tasks such
as object recognition, adaptive compression and im-
age retrieval. Recently, low-rank matrix recovery (LR)
theory has been introduced into saliency detection,
and achieves impressed results. However, the existing
LR-based models neglect the underlying structure of
images, and inevitably degrade the associated perfor-
mance. In this paper, we propose a Low-rank and Struc-
tured sparse Matrix Decomposition (LSMD) model for
salient object detection. In the model, a tree-structured
sparsity-inducing norm regularization is firstly intro-
duced to provide a hierarchical description of the im-
age structure to ensure the completeness of the extracted
salient object. The similarity of saliency values within
the salient object is then guaranteed by the `∞-norm.
Finally, high-level priors are integrated to guide the ma-
trix decomposition and enhance the saliency detection.
Experimental results on the largest public benchmark
database show that our model outperforms existing LR-
based approaches and other state-of-the-art methods,
which verifies the effectiveness and robustness of the
structure cues in our model.

Introduction
Salient object detection is an emerging topic in computer
vision as it provides an alternative solution to various im-
age semantic understanding tasks, such as object detection
(Rutishauser et al. 2004), region-based image retrieval (Itti,
Koch, and Niebur 1998), and adaptive image compression
(Cheng et al. 2011). A typical workflow of salient object de-
tection involves detecting and extracting the most salient and
attention-grabbing foreground object from the background.
The output usually is a so-called “saliency map” where the
intensity of each pixel represents the probability of that pixel
belonging to the salient object (Borji, Sihite, and Itti 2012).

Many computational models have been proposed to calcu-
late the saliency map of a given image. According to whether
the prior knowledge is required or not, two classes of mod-
els are usually distinguished: bottom-up and top-down. Typ-
ical bottom-up models extract low-level features such as
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color, intensity, and orientation to construct a conspicuity
map in each independent feature space. These conspicuity
maps are then combined to form the final saliency map via
a predefined fusion strategy (Itti, Koch, and Niebur 1998).
Frequency domain analysis (Hou and Zhang 2007)(Achanta
et al. 2009) and global contrast-based model (Cheng et al.
2011) are also introduced to compute low-level saliency.
The main limitation of these approaches is that the de-
tected salient regions may only contain parts of the target
object, or be easily merged with background. On the other
hand, the top-down models exploit prior knowledge, such as
color (Khan, Weijer, and Vanrell 2009), location (Oliva et al.
2003) and context (Liu et al. 2007), to guide the subsequent
saliency detection and estimation. However, the high vari-
ety of object types limits its generalization and scalability of
these methods.

Recently, an emerging trend is to combine and take ad-
vantage of both models into a unified framework. One rep-
resentative work comes from introducing the low-rank ma-
trix recovery (LR) theory (Candès et al. 2011) into salient
object detection. For instance, Shen et al. proposed a Uni-
fied method based on LR (ULR) to incorporate traditional
low-level features with high-level prior knowledge. Lang et
al. proposed a Multi-Task Sparsity Pursuit (MTSP) method
to combine multiple types of features for detecting saliency
collaboratively (Lang et al. 2012). The existing LR-based
saliency detection models share a common assumption that
an image can be represented as a highly redundant infor-
mation part (e.g. background regions) plus a salient part
(e.g. foreground object) including several homogeneous re-
gions. The redundant information part usually lies in a low-
dimensional feature subspace, which can be approximated
as a low-rank feature matrix, while the salient part can be
viewed as a sparse sensory matrix (Shen and Wu 2012). As
a result, given the feature matrix F of an input image, it can
be decomposed as a low-rank matrix L plus a sparse ma-
trix S corresponding to the non-salient background and the
salient object, respectively. It is formulated as low-rank ma-
trix recovery problem (Candès et al. 2011):

min
L,S
‖L‖∗+λ‖S‖1 s.t. F = L + S, (1)

where the nuclear norm ‖·‖∗ (sum of the singular values of
a matrix) is a convex relaxation of the matrix rank function
(Candès et al. 2011), ‖·‖1 indicates `1-norm which promotes
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Figure 1: Saliency maps of two typical challenging cases
computed by LR-based models and our proposed LSMD
model. The outputs of MTSP and ULR are scattered and in-
complete, while ours uniformly cover the whole salient ob-
jects which are close to ground truth (GT).

sparsity, and the parameter λ > 0 is a tradeoff between the
two items.

From the perspective of statistical signal processing, when
using the `1-norm to promote the sparsity on the matrix S in
Formula (1), it assumes that each element in S is indepen-
dent (Zhao, Rocha, and Yu 2009)(Jia, Chan, and Ma 2012)
regardless of the potential relationships and structures (such
as spatially contiguity and pattern consistency) among them.
This assumption inevitably brings two limitations for salient
object detection: (i) The generated saliency map tends to be
scattered salient pixels or patches instead of spatially con-
tiguous regions. (ii) The existing LR-based methods can not
uniformly highlight the whole salient object, which results
in incompleteness of the detected object. Some typical ex-
amples about these two limitations are shown in Figure 1.

To circumvent these problems, we propose a Low-
rank and Structured sparse Matrix Decomposition (LSMD)
model that can capture the underlying structure of the salient
object. To the end, (i) a tree-structured sparsity-inducing
norm, which essentially is a group sparsity with a certain
tree structure, is introduced to constrain the matrix in terms
of multi-scale spatial connectivity and feature similarity. (ii)
The `∞-norm is embedded into the tree-structured sparsity-
inducing norm to replace the plain `1-norm so as to enforce
pixels within the same object have similar saliency values.
An effective optimization algorithm for LSMD model is also
given out by extending the Augment Lagrange Multipliers
(ALM) algorithm. Experimental results on the public bench-
mark database (Achanta et al. 2009)(Liu et al. 2007) show
that our method outperforms the state-of-the-art approaches
and can effectively extract the entire salient object.

Low-rank and Structured Sparse
Matrix Decomposition

Problem Formulation: For efficiency, we partition the im-
age into non-overlapping patches as the basic image ele-
ments in saliency estimation. Assume an input image is par-
titioned into N patches {Pi}Ni=1. For each patch Pi, we
extract the D-dimension feature and use vector fi ∈ RD
to represent it. The ensemble of feature vectors forms a
matrix representation of the entire input image as F =

Figure 2: A sample index tree for illustration. Depth1
(Root): G1

1 = {1, 2, 3, 4, 5, 6, 7, 8}. Depth2: G2
1 =

{1, 2, 3, 4}, G2
2 = {5, 6}, G2

3 = {7, 8}. Depth3: G3
1 =

{1, 2}, G3
2 = {3, 4}, G3

3 = {5}, G3
4 = {6}.

[f1, f2, . . . , fN ] ∈ RD×N . Then, the task of salient object de-
tection is to design an effective algorithm to decompose the
feature matrix F into a redundant information part L and a
structured salient part S formulated as:

min
L,S
‖L‖∗+λΩ(S) s.t. F = L + S, (2)

where Ω(·) is a structured sparsity-inducing norm regular-
ization to preserve relevant structure and latent relationship
of patches in S.

LSMD model
Tree structure is widely existed and explored in natural
image processing, e.g., tree-structured wavelet transforms,
tree-based image segmentation (Felzenszwalb and Hutten-
locher 2004), etc. Recent advances in the sparse representa-
tion research also exploit tree structure to pursuit the struc-
tured sparsity in terms of relationships between patterns
(Jenatton et al. 2011). In this work, we consider a tree-
structured sparsity-inducing norm, which essentially is a hi-
erarchical group sparsity, to represent the underlying struc-
ture of images in feature space.

First, we give out the definition of so-called index tree
(Liu and Ye 2010): For an index tree T with depth d,
let Gij be the j-th node at the i-th level and Ti =

{Gi1, . . . , Gij , . . . , Gini
} contain all the nodes correspond-

ing to depth i, where ni is the number of nodes at the i-
th level of T . Specially, for the root node, n1 = 1, and
T1 = {G1

1} = {1, 2, . . . N} (N as the patch number). Fur-
thermore, the nodes in the tree satisfy the following con-
ditions: (i) the nodes from the same depth level have non-
overlapping indices, i.e. for any 1 ≤ j, k ≤ ni, j 6= k, we
haveGij∩Gik = ∅. (ii) LetGi−1j0 be the parent node of a non-
root nodeGij , thenGij ⊆ G

i−1
j0 and

⋃
j G

i
j = Gi−1j0 . Figure 2

shows a sample index tree with eight indexes (N = 8).
Assume we have a meaningful index tree that store un-

derlying structure information of a natural image, and im-
pose it on S as a structured constraint. Thus, a general tree-
structured sparsity regularization can be written as:

Ω(S) =

d∑
i=1

ni∑
j=1

wij‖SGi
j
‖p,q, (3)

where wij ≥ 0 is the weight for the node Gij , SGi
j
∈

RD×|G
i
j| (| · | denotes the cardinality of a set) is the sub-

797



Algorithm 1 Solving LSMD via ALM algorithm.
Input: Feature matrix F, parameter λ, ρ and wij (default as

1) for each Gij .
1: Initialize L0=0, S0=0, Y0=0, µ0=0.5, µmax= 106,

and ρ= 6.
2: While not converged do
3: Lk+1= arg min

L
L(L,Sk,Yk,µk)

4: Sk+1= arg min
S

L(Lk+1,S,Yk,µk)

5: Yk+1 = Yk + µk(F− Lk+1 − Sk+1)
6: µk+1= min (ρµk,µmax)
7: k = k + 1
8: End While

Output: L and S.

matrix of S corresponding to the node Gij , and ‖ · ‖p,q is
the mixed `p,q-norm1. Consequently, Ω(·) is essentially a
weighted group sparsity with a certain tree structure, which
can fuse similar image patches into identical groups, and
meanwhile represent the relationships among groups.

The mixed `p,q-norm on SGi
j

in Formula (3) actually in-
cludes two components: (i) The `p-norm on each column of
matrix SGi

j
indicates saliency values calculation of corre-

sponding patches. Inspired by the work of Lang et al., we
use `2-norm (p = 2) to measure the saliency of each patch
in this paper. (ii) The `q-norm on the resulting saliency val-
ues is to express the relationships among the corresponding
patches within the same group. Since similar saliency val-
ues are expected to be induced for the patches within the
same group, the `∞-norm (q =∞) is used here. For the `∞-
norm, it is the maximum saliency value of patches within a
group that decides if the group is set to saliency or not, and
it does encourage all the patches within the group take simi-
lar (hence close to the maximum) values (Jia, Chan, and Ma
2012).

After introducing the tree-structured sparsity regulariza-
tion with the mixed `2,∞-norm, the LSMD model can be
reformulated as

min
L,S
‖L‖∗+λ

d∑
i=1

ni∑
j=1

wij‖SGi
j
‖2,∞ s.t. F=L+S. (4)

It is noted that by setting the index tree to be a single layer
one (d = 1, wij = 1, and q = 1), Formula (4) will be de-
graded to Formula (1). Therefore, LSMD can be regarded
as a generalization of the standard LR model (Candès et al.
2011).

Optimization via ALM
Considering both the nuclear norm and the tree-structured
sparsity-inducing norm are convex, we can optimize them by

1The mixed `p,q-norm of a matrix X ∈ Rm×n is defined as :

‖X‖p,q= (
n∑

i=1

‖xi‖qp )
1/q =

∥∥∥(‖x1‖p, . . . , ‖xn‖p)
∥∥∥
q
, where xi

is the i-th column of the matrix.

extending the Augment Lagrange Multipliers (ALM)(Lin et
al. 2009) algorithm. Correspondingly, Formula (4) is equiv-
alently converted to the following augmented Lagrangian
function form:

L(L,S,Y, u) = ‖L‖∗ + λ
d∑
i=1

ni∑
j=1

wij‖SGi
j
‖2,∞

+ 〈Y , F− L− S〉+ µ
2 ‖F− L− S‖2F ,

(5)

where Y is the Lagrange multiplier, and µ > 0 is a penalty
parameter. To solve Formula (5), we search for the optimal
L, S, and Y iteratively. The pseudo code of optimization
procedure is outlined in Algorithm 1. We now discuss how
to update these variables in each iteration.

Updating L: To update Lk+1 at the (k + 1)-th iteration
in Algorithm 1, we fix L and S, and solve the following
problem accordingly:

Lk+1= arg min
L

L(L,Sk,Yk,µk)

= arg min
L

‖L‖∗ +
〈
Yk, F− L− Sk

〉
+µk

2

∥∥F−L−Sk
∥∥2
F

= arg min
L

τ‖L‖∗ + 1
2 ‖L−ML‖2F ,

(6)
where τ= 1

µk and ML=F−Sk+ 1
µk Yk. The solution to For-

mula (6) can be solved as

Lk+1=UTτ [Σ]VT , where(U,Σ,VT ) =SVD(ML). (7)

Note that Σ is the singular value matrix of ML. The operator
Tτ [·] in Formula (7) is a Singular Value Thresholding (SVT)
operator (Chen, Wei, and Wang 2012), which is defined
by element-wise τ thresholding of Σ, i.e., diag(Tτ [Σ]) =
[tτ [σ1], tτ [σ2], . . . , tτ [σr]] for rank(Σ) = r, where each
tτ [σ] is determined as

tτ [σ] =

{
σ − τ, ifσ > τ,
σ + τ, ifσ < −τ,

0, otherwise.
(8)

Updating S: To update Sk+1 , we derive Formula (5) with
fixed L and Y, and obtain the following form:

Sk+1= arg min
S

L(Lk+1,S,Yk,µk)

= arg min
S

λ
d∑
i=1

ni∑
j=1

wij‖SGi
j
‖2,∞

+
〈
Yk, F− Lk+1 − S

〉
+µk

2

∥∥F− Lk+1 − S
∥∥2
F

= arg min
S

ε′
d∑
i=1

ni∑
j=1

wij‖SGi
j
‖2,∞ + 1

2 ‖S−MS‖2F ,

(9)
where ε′ = λ

µk and MS=F − Lk+1+ 1
µk Yk. The above

tree-structured sparsity optimization problem can be solved
by a hierarchical group thresholding operator (Jenatton et al.
2011), which uses the orthogonal projection onto the `1-ball
as a relaxation for the `∞-norm.

LSMD-based Salient Object Detection
This section elaborates on the salient object detection us-
ing the proposed LSMD model. This detection is basically
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Figure 3: Framework of the LSMD model for salient object detection.

deployed over the low-level features as detailed in the first
part of this section, then high-level prior knowledge can be
further introduced into the proposed LSMD model, as dis-
cussed in the second part. Figure 3 shows the LSMD-based
saliency object detection framework.

Low-level Salient Object Detection
Our framework for low-level salient object detection based
on the LSMD model consists of four steps as below.

Image Abstraction. In the first step, we aim to parti-
tion an input image into compact and perceptually homo-
geneous elements. Following (Shen and Wu 2012), we first
extract the low-level features including RGB color, steer-
able pyramids (Simoncelli and Freeman 1995), and Gabor
filter (Feichtinger and Strohmer 1998) to construct a 53-
dimension feature space. Then, we perform the mean-shift
clustering (Comanicu and Meer 2002) in the feature space
to over-segment the image into N basic patches {Pi}Ni=1.
Each patch is represented by fi, the ensemble of which forms
the feature matrix as F = [f1, f2, . . . , fN ] ∈ RD×N (here
D = 53).

Tree Construction. The second step is to construct an in-
dex tree to represent the image structure via divisive hierar-
chical k-means clustering. During the tree construction, for
each image patch Pi, we get its position coordinate pi and
feature representation fi. All patches from an image com-
posite a set of N data points W= {wi}Ni=1= {[pi, fi]}Ni=1.
Then the divisive hierarchical clustering starts with all the
points in a single cluster, and then recursively divides each
cluster into k child clusters using k-means algorithm. The
recursion terminates when all the clusters contain less than
k data points. In this paper, we exploit a quad-tree structure
(k = 4). Figure 4 shows a visualized example of hierarchical
clustering, resulting in a 6-layer index tree structure.

Matrix Decomposition. After obtaining the feature ma-
trix representation and the corresponding structured index
tree of the input image, the third step is to use the proposed
LSMD model defined in Formula (4) to decompose F into
a low-rank component L and a structured sparse component
S. By introducing the tree-structured sparsity regularization
into the LSMD model, we can group perceptually homoge-
neous patches of the foreground object, while discarding the

Figure 4: Illustration of index tree construction based on the
divisive hierarchical k-means clustering. From left to right,
each image indicates one layer in the index tree, and each
patch represents one node.

non-salient background.
Saliency Assignment. The last step is to transform im-

age representation from the feature domain to the spatial do-
main. To the end, we define a simple assignment function
on the structured matrix S to give a saliency value for each
patch Pi:

Sal(Pi) = ‖si‖2, (10)

where si is the i-th column of matrix S. A larger response
of Sal(Pi) means a higher saliency rendered on the cor-
responding image patch. The resulting saliency map is ob-
tained though merging all patches together. After normaliz-
ing and high-dimensional Gaussian filtering (Adams, Baek,
and Davis 2010)(Perazzi et al. 2012) on each pixel (x, y),
we can get the final pixel-level saliency map Map(x, y) =
Sal(Pi) where (x, y) ∈ Pi.

Generalized to Integrate High-level Priors
We further extend the proposed LSMD-based saliency de-
tection to integrate high-level priors. Inspired by the work of
Shen et al., we employ the Gaussian distribution to fit the lo-
cation, semantic and color priors, and fuse them to generate
a high-level prior map (see Figure 3). Then the map is incor-
porated into the proposed LSMD model through setting the
weight parameter wij defined in Formula (4).

For each patch Pi, we can use its corresponding aver-
age prior value, i.e. πi ∈ [0, 1], to represent its high-level
information. Thus, the prior map is formulated as a vec-
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tor Π = [π1, π2, . . . , πN ] and then embedded into the tree-
structured sparsity-inducing norm as the weight via:

wij = 1−max(ΠGi
j
), (11)

where ΠGi
j
∈ R|G

i
j| is the sub-vector of Π corresponding to

the node Gij . Formula (11) indicates that the node with high
prior probability value tends to be salient, and therefore has a
small penaltywij . As a result, the high-level prior knowledge
is seamlessly integrated with the proposed LSMD model to
guide the matrix decomposition to enhance the saliency de-
tection. It is worth noting that if we fixwij = 1 for each node
Gij , the proposed model is degraded to be a pure low-level
saliency detection model.

Experiments and Comparisons
We evaluate our LSMD-based saliency computation model
on the 1000-image publicly available dataset provided by
Achanta et al., which is a subset of MSRA dataset (Liu et
al. 2007). This 1000-image dataset is the largest of its kind
(Cheng et al. 2011) with accurate manual labels as binary
ground truth. We also provide an extensive comparison of
our method to the existing LR-based methods and 10 pre-
vailing algorithms, as detailed later. In our experiments, we
try to answer the following two key questions on saliency
detection:
Q1: Is the tree-structured sparsity regularization beneficial
for salient object detection. And how does the proposed
LSMD method compare to the existing LR-based methods?
Q2: Compared with other state-of-the-art algorithms, does
the generalized LSMD model with high-level prior knowl-
edge have its superiority?

Evaluation Measures and Parameter Selection
Following the standard evaluation protocols in (Achanta et
al. 2009)(Cheng et al. 2011), two evaluation measures are
exploited. In the first one, we segment saliency maps using
every fixed threshold in the range [0, 255]. The segmented
binary masks are then compared with the ground truth to
compute the precision and recall at each value of the thresh-
old, resulting in the precision versus recall curve. In the sec-
ond evaluation, we use the image dependent adaptive thresh-
old, defined as twice the mean saliency value of the entire
image (Achanta et al. 2009):

Ta =
2

W ×H

W∑
x=1

H∑
y=1

Map(x, y), (12)

whereW andH are the width and height of the saliency map
in pixels respectively. In this test, in addition to precision
and recall, we also compute their weighted harmonic mean
measure or F -measure, which is defined as:

Fβ =
(1 + β2)× Precision×Recall
β2 × Precision×Recall

. (13)

The same as previous works (Achanta et al. 2009)(Cheng et
al. 2011), β2 is set to be 0.3.

(B)(A)

Figure 5: Comparisons with the existing LR-based methods.
The superscript “*” in the figure indicates the method with-
out priors.

In the proposed LSMD-base saliency detection models,
the tradeoff parameter λ in Formula (4) has a notable influ-
ence on the detection performance. To avoid the dependency
between datasets for parameter selection and performance
evaluation, we use images from MSRA dataset that has no
intersection with the 1000-image test dataset to find the opti-
mal parameter λ. We find experimentally that the best choice
is λ=0.25.

Comparisons with LR-based methods
To answer the question Q1, we compare our method
(LSMD) with existing LR-based methods (ULR and MTSP)
under two conditions: without priors and with priors.

In the case of pure low-level saliency detection, as shown
in Figure 5, our method outperforms other LR-based meth-
ods under the two evaluation criteria. It demonstrates that
the tree-structured sparsity regularization is much more ef-
fective than the plain `1-norm regularization for salient ob-
ject detection, because the former one improves the com-
pleteness of the extracted salient object based on multi-scale
representation of image structure.

If we consider the high-level priors, the performances of
these algorithms are all further improved as validated in Fig-
ure 5. The proposed LSMD method still achieves the best
performance due to the tree-structured regularization. It in-
dicates that both the structured regularization and high-level
priors are beneficial for salient object detection. Interest-
ingly, our method without priors (Ours*) even has compa-
rable performance to MTSP with priors as shown in Fig-
ure 5(B). This phenomenon further implies that the struc-
ture cue is another important and recommendable factor for
visual saliency detection.

Comparisons with state-of-the-art methods
In this experiment, we aim to answer the question Q2 by
comparing our method with the other 10 prevailing ap-
proaches, including classical works: bio-inspired saliency
(IT)(Itti, Koch, and Niebur 1998), fuzzy growing (MZ)(Ma
and Zhang 2003), graph-based saliency (GB)(Harel, Koch,
and Perona 2006), spatiotemporal cues (LC)(Zhai and
Shah. 2006), spectral residual saliency (SR)(Hou and Zhang
2007); and recent leading methods: salient region detection
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(A) (B) (C)

Figure 6: A and B: precision-recall curves for fixed thresholding of saliency maps. C: precision, recall, and F-measure for
adaptive thresholding. In all experiments, our method consistently outperforms all the state-of-the-art approaches.

Figure 7: Visual comparison of saliency maps. We compare our method (Ours) to existing LR-based methods and the other
10 prevailing methods. Our segmentation results (Ours-Seg), which are based on saliency maps (Ours) using simple adaptive
threshold, are close to ground truth.

(AC)(Achanta et al. 2008), frequency-tuned saliency (FT)
(Achanta et al. 2009), context-aware saliency (CA)(Gofer-
man, Manor, and Tal 2010), global-contrast saliency (HC
and RC)(Cheng et al. 2011). We use authors’ implementa-
tion or the resulting saliency maps provided in (Cheng et
al. 2011)(Achanta et al. 2009) for evaluation and give out
comparison results in Figure 6. The precision versus re-
call curves in Figure 6(A) and (B) show that the saliency
maps generated by our LSMD method with fixed threshold-
ing are much more accurate than those given by the other
10 prevailing algorithms, and even close to the ground truth.
Meanwhile, as shown in Figure 6(C), the performance of our
method using adaptive threshold is also superior to the other

algorithms. For instance, the F -measure of our method is
better than that of the best (HC) among the 10 prevailing
algorithms by more than 10%.

Figure 7 shows the visual comparison2 on several chal-
lenging images that most existing methods failed. We can
clearly see that, compared with other methods, the proposed
LSMD-based method can not only completely extract the
entire salient object from each image without many scat-
tered patches, but also produce nearly equal saliency values
of the pixels within the salient object. This phenomenon fur-
ther confirms the effect of the structural constraint.

2Please access to our project webpage for more comparisons
and details. http://sites.google.com/site/saliencydetection

801



Conclusions
In this paper, we present a generic low-rank and struc-
tured sparse matrix decomposition model for visual saliency
computation. In the proposed model, a hierarchical tree-
structured sparsity-inducing norm is introduced to represent
the underlying structure of image patches in feature space.
The `∞-norm is embedded into the tree-structured spar-
sity to enforce patches within the same object have simi-
lar saliency values. Moreover, high-level prior knowledge is
seamlessly integrated into our model to enhance saliency de-
tection. Experiments indicate that the proposed model con-
sistently achieves the superior performance on the public
benchmark dataset. For future work, we believe that the pro-
posed model can be extended from matrix decomposition to
tensor decomposition, which will explicitly find most repre-
sentative features for salient object detection.
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